
International Journal of  Thermophysics, Vol. 14, No. 1, 1993 
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An improved parametric equation for the thermodynamic properties of fluids is 
presented that incorporates the crossover from singular thermodynamic 
behavior in the immediate vicinity of the critical point to regular thermo- 
dynamic behavior far away from the critical point. Based on a comparison with 
experimental data for ethane and methane, it is demonstrated that the crossover 
model is capable of representing the thermodynamic properties of fluids in a 
large range of temperatures and densities around the critical point. 
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1. I N T R O D U C T I O N  

A characteristic feature of thermodynamic states of a fluid in the vicinity of 
the vapor-liquid critical point is the presence of long-range fluctuations 
in the density. The intensity of these fluctuations diverges at the critical 
point. As a consequence, the thermodynamic surface of fluids exhibits a 
singularity at the critical point. The asymptotic singular critical behavior of 
the thermodynamic properties can be described in terms of scaling laws 
with universal exponents and universal scaling functions [1, 2]. In order to 
obtain an equation of state for fluids in the immediate vicinity of the 
critical point, one commonly introduces two parametric variables, r and 0, 
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such that r measures a distance from the critical point [1-4]. By incor- 
porating the critical singularities as power laws in terms of the variable r, 
while the ~ dependence is kept analytic, one avoids any spurious 
singularities in the one-phase region away from the critical point [3] and 
can formulate an equation of state that is fully consistent with the 
theoretical predictions for the critical-point singularity. A scaled parametric 
equation most commonly adopted is the so-called linear model originally 
introduced by Schofield et al. [-5]. 

Fluids near the critical point satisfy the same asymptotic scaling laws 
as symmetric three-dimensional Ising-like systems [-1,2]. However, a 
serious problem is that these asymptotic scaling laws are valid only in an 
extremely small range of temperatures and densities around the critical 
point [6]. Attempts have been made to extend the asymptotic linear-model 
equation of state by including a confluent singularity and by incorporating 
a revision that accounts for lack of vapor-liquid symmetry [7-10]. These 
more general parametric equations of state have been used to represent 
the thermodynamic properties of many fluids near the critical point 
[-1, 4, 8-13]. Nevertheless, the range of these equations of state is still 
sufficiently restricted so that they have not yet received wide acceptance for 
practical applications in the engineering literature [14]. 

On the other hand, it has become evident that critical fluctuations are 
actually present in fluids in a very large range of temperatures and densities 
[15, 16]. Hence, to account for the effects of these critical fluctuations on 
the equation of state, it is necessary to consider also the nonasymptotic 
critical behavior of the thermodynamic properties including the crossover 
to regular classical behavior far away from the critical point. 

A parametric model that incorporates crossover from singular 
behavior near the critical point to regular behavior far away from the 
critical point has recently been developed by Luettmer-Strathmann et al. 
[17]. This parametric model is based on a theory of nonasymptotic critical 
behavior initiated by Nicoll and co-workers [18, 19] and further developed 
by Chen and co-workers [15, 20]. The theoretical approach starts from a 
classical Landau expansion, which is renormalized to account for the 
critical fluctuations. 

A phenomenological attempt to formulate a parametric model that 
also accounts for the crossover to regular behavior far away from the 
critical point has been made by Kiselev and co-workers [4, 21, 22]. We 
have continued a study, initiated by Anisimov et al. [16], comparing this 
phenomenological crossover model with the theoretical results for the 
crossover behavior mentioned above. This study has led us to introduce 
some modifications into the earlier crossover model of Kiselev et al. In this 
paper we show that the improved phenomenological parametric crossover 
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model not only is capable of representing the thermodynamic properties of 
fluids at temperatures up to temperatures as high as twice the critical 
temperature, but also accounts for the thermodynamic properties in the 
two-phase region in a substantial range of temperatures below the critical 
temperature. 

We proceed as follows. In Section 2, we review the known asymptotic 
scaling-law behavior of the thermodynamic properties as well as some 
previous attempts to include correction terms to account for the lack of 
vapor-liquid symmetry and for the presence of a confluent singularity. 
In Section 3, we summarize some issues related to the expected crossover 
behavior of the Helmholtz free energy. In Section 4 we formulate a 
phenomenological parametric crossover model for the Helmholtz free 
energy. This crossover model is a modification of a phenomenological 
crossover model earlier proposed by Kiselev et al. [4, 21, 22]. This model 
is compared with experimental thermodynamic-property data in Section 5. 
Our results are summarized in Section 6. 

2. ASYMPTOTIC SCALING-LAW BEHAVIOR 

Let V be the volume, p the density, T the temperature,/~ the chemical 
potential, Z = (~p/0#)T a susceptibility, A the Helmholtz free energy and Cv 
the heat capacity at constant volume. These thermodynamic quantities are 
made dimensionless with the aid of the critical temperature T~, critical 
density Pc, and critical pressure Pc [1] 

i~= -T~/V, 

= zPr T/p2r To, 

In addition, we define 

= p/p~, ~ = #p~ ~rr T l 
A=ATo/VP~T, ?~=C,T~/VP~ ) (1) 

z =  7"+ I = ( T -  T~)/T, A p = ~ -  l (2) 

d f i = # - # o ( T )  (3) 

A j  = ~ -- ~Sfio(T ) - Ao(T) (4) 

where rio(T) and Ao(T) are analytic functions of temperature such that 
Aft = 0 and Ao = - 1  at the critical point. The idea is that AA incorporates 
the effect of the critical fluctuations, while the functions rio(T) and -~o(T) 
are in practice represented by truncated Taylor expansions of the form 
i-15,17] 

rio(T)= ~ pjz -/, Ao(T)= --1 + ~ Ajz j (5) 
j = 0  j = l  
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According to the theory o f  critical phenomena, the Helmholtz 
free-energy density A/V satisfies close to the critical point a scaling law 
of the form [1, 2] 

AM = lull 2-~ [fo(uh/lu~l ~) (6) 

where the scaling fields u~ and Uh are asymptotically proportional to ~ and 
Aft, respectively, while a, fl, and 6 are critical exponents. In fact, Eq. (6) is 
the first term of a so-called Wegner expansion [23, 24] 

A.4=[u~l 2 ~ Ifo(uh/[u~[~) + ~ Glu~l~s f,(uh/lu~[~)l (7) 
i = l  

where, more generally, u~ and uh are analytic functions of ~ and A#, while 
ci are additional system-dependent coefficients. As a consequence, various 
thermodynamic properties exhibit power-law behavior when the critical 
point is approached along the critical isochore (Ap = 0), along the critical 
isotherm (~ = O) or along the coexistence curve (Ap = Apcxc). The first two 
terms of these power-law expansions for a number of properties are listed 
in Table I. The critical exponents are related by 

2 -c~=f l (6  + I), 7 = 2 - a - 2 f i  (8) 

The critical exponents, as well as the scaling functions f~ in Eq. (7), are 
universal. Fluids belong to the universality class of three-dimensional 
Ising-like systems with exponent values [ 1, 4, 25 ] 

a=0.11,  fl = 0.325, A~ =0.51 (9) 

Universality of the scaling function fo in Eqs. (6) and (7) implies that only 
two of the amplitudes A+, A - ,  F +, F - ,  D, and B can be treated as 
system-dependent constants. Similarly, universality of the scaling function 

Table I. Critical Power-Law Expansions 

Property Power-law expansions Path 

g v =  --~2(322/c~'2)o A+z-=(1 + A; - z  "~' + . . . )  A p = O ,  z>-O 
~ v = - T 2 ( O 2 A / ~ T 2 ) p  A [ z [ - ~ ( l + A l [ V [ ' ~ t +  ...) A p = O , z < ~ O  
2 = (a~/a~)~ r + ~ - v ( 1  + F ?  ~'~, + . . . )  Ap = O, ~ >~ 0 

= (OP/0fi)r F-I~l-~ (1 + F{ Izl ~' + ..-) Ap = Ap .... �9 <<. 0 
Aft = (OAA/OAp)T +_ D IApl 6 (1 4- DI [Apl z'/B + " ' )  z = 0 
IAp~x~l BIz[P(1 + B 1 [z] m + ...) �9 ~< 0 
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f~ in Eq. (7) implies that only one of the correction-to-scaling amplitudes 
A~-, A~, F +, F 2 ,  D~, and B~ can be treated as a system-dependent 
constant. 

In order to formulate an equation of state based on the asymptotic 
scaling-law behavior in Eq. (6), one introduces two parametric variables r 
and ~9. There are several ways in which this can be done, but the parametric 
equations most commonly adopted are [3, 4] 

= r(1 - b202) 

Ap  = kr~O 

A ~  = arr 0(1 - -  ~2) 

(10) 

(11) 

(12) 

where a and k are the two system-dependent constants that enter into the 
asymptotic scaling-law behavior, while b 2 is a universal constant. In the 
original formulation, Eqs. (10) and (12) defined the transformation, while 
Ap  was then assumed to be linear in 0 [5].  In practice, though, we use 
Eqs. (10) and (11) to convert the physical variables z and A p  into the 
parametric variables r and & 

The relationships between the amplitudes of the asymptotic critical 
power laws and the linear-model constants a, k, and b 2 are presented in 
Table II. The universal constant b 2 is selected so as to obtain agreement 
with the known theoretical values of the universal relations among the 
amplitudes of the asymptotic critical power laws. A possible choice is 

b 2 = (y - 2fl)/7(1 - 2fl) = 1.359 (13) 

which corresponds to the so-called restricted linear model [3 5]. With this 
value of b 2 w e  obtain 

A + / A  =0.52, F + / F  - =4.87, A * F + / B 2 = O . 0 5 6 ,  

Table II.  Ampl i tudes  of Cri t ical  Power  Laws  

F + D B  ~-1 = 1.69 

(14) 

Asympto t i c  cr i t ical  ampl i tudes  

A + = ak~(  7 - 1 )/2ctb 2 F + = k / a  

D = a ( b / k )  ~ (b 2 - 1 ) /b B = k / ( b  2 - 1 )f~ 

A / A + = [ ( 1 - 2 f l ) / ( 7 - 1 ) ] Z ( b 2 - 1 f f  F - / F + - ( 1  2 f l ) ( b 2 - 1 ) / 2 ( y - 1 )  
D F  + B ~ -  l = b a -  3(b 2 _ 1 ) ~  i A + F +  B Z =  7(y _ l )(b 2_l)zt~/2~b2 

Correc t ion- to-sca l ing  ampl i tudes  

A(=r((~/+31)~/~(~/-1) ,  r + = -c, /a,  B~=r~ /2 (b2 -1 )  ~+~, 
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in good agreement with the theoretical values as reviewed by Tang et al. 
[26]. 

The linear-model equations imply for the Helmholtz free-energy 
density 

AA = akr 2-~ ~0(0) (15) 

where the function ~o(0) is given in Table III. It turns out that the 
asymptotic scaling-law behavior applies only in an extremely small range 
around the critical point [6]. To represent actual thermodynamic-property 
data in the critical region, it is necessary to revise the asymptotic scaling- 
law behavior to account for lack of vapor-liquid symmetry and to extend 
it by including the first correction term in the Wegner expansion given by 
Eq. (7). Two revised and extended scaled parametric equations of state 
have been widely used for this purpose, namely, one proposed by Balfour 
et al. [7] and one proposed by Kiselev [9]. Here we consider the latter 
version. 

It is first noted that a more appropriate order parameter for a fluid 
near the critical point is not Ap itself, but 

m = A p - d l z  (16) 

where d 1 is a system-dependent constant related to the diameter of the 
coexistence curve [4, 15]. Furthermore, the scaling fields u~ and uh in 
Eq. (6) are not simply proportional to z and A/2, but should be taken as 
linear combinations of z and A/~, a procedure often referred to as mixing 
of the scaling fields. Finally, the leading correction terms in the Wegner 
expansion given by Eq. (7) must be incorporated. A revised and extended 
parametric model accounting for these effects can be defined by the 
following set of equations [9, 10]: 

z = r ( 1 - b 2 0 2 )  

m = Ap - dlz = krPO 

A~l=kr2-~[a~o(O)+ ~ cir~i~(O) 1 
i = l  

T a b l e  I I I .  T h e  F u n c t i o n s  ~ i ( O )  in  t h e  P a r a m e t r i c  M o d e l  

(17) 

(18) 

(19) 

t/Jo(~t ) = { 1 /2b4) [2 f l (b  2 - -  1 ) / (2  - -  c~) + 2 3 ( 2 7  - -  1 )( 1 - -  32,92t/7(1 - -  g )  + ( 2 3  - -  1 )(1 - -  32,92)2/~]  

~1 (,9) = [ 1 /2b2(1  - -  = + A 1 ) ]  [ ( 7  + A 1)/(2 - ~ + A l)  - (1 - 2 3 ) b 2 9 2  ] 
V2(,9) = [ t / 2 b 2 (  1 - ~ + A 2 ) ]  [ ( 7  + A2) / (2  - ~ + A2)  - (1 - 2 f l ) b Z a  2 ]  

rE3(,9 ) = ' 9 - -  ( 2 / 3 ) ( e -  3)b2,93 + (1 - 2 3 ) e l b 4 a S / ( 5  - 2e)  
tP4(,9) = (1 /3)b2 ,93  + ( 1 - 2 f l ) e 2 b 4 , g s / ( 5  - - 2 e )  

~5(~9) = ( 1 / 3 ) b 2 0 3  + (1 - -  2~)e4b4~95/(5 - 2e3) 
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with 

A2=2A1, z~3=zJ4=7+fl--  1 (20) 

while A5 is the exponent of the asymmetric correction term in the Wegner 
expansion, sometimes also designated as Aa [15, 17, 25]. The explicit 
expressions for the functions g~i(0) in Eq. (19) are presented in Table III. 
The functions ~o, gtl, gt3, and ~u 4 are identical with the functions 
designated ~a, gto, ~d, and ~f in previous publications [9, 10, 13]. It 
should be noted that the terms for i=  2 and i = 5 were not included in the 
previous work of Kiselev and co-workers but have been included here for 
use in formulating our parametric crossover model in Section 4. The terms 
with exponents A1, A2, and A 5 in Eq. (19) represent correction terms that 
appear in the Wegner expansion. However, the terms with z~ 3 and A 4 in 
Eq. (19) do not correspond to any terms in the Wegner expansion but 
originate from the mixing of the scaling fields in the expressions for the 
asymptotic scaling law given by Eq. (6) [9, 10]. With c2=c5=0,  the 
revised and extended linear model defined by Eqs. (17)-(19) has been used 
to represent the thermodynamic properties of number of fluids in the 
critical region [10, 13,27]. For the ratios of the correction-to-scaling 
amplitudes, this model implies A~-/F( =0.65 and BI/F~-=0.84 to be 
compared with the theoretical values A~-/F~ =0.95+0.03 and 
B1/F~- = 0.9 _+ 0.2 [263. 

An alternative revised and extended parametric model, originally 
proposed by Balfour et al. [7], has been used extensively by Sengers 
and co-workers [1, 8, 11, 12]. The primary difference is that in the latter 
version the mixing of the scaling field is represented by one system- 
dependent parameter c, while in Eq. (19) two system-dependent constants 
c3 and c4 account for this mixing. A comparative study of the two revised 
and extended parametric equations of the state has been made by Aizpiri 
et al. [14]. 

The range of applicability of either version is still limited and corre- 
sponds roughly to ~ ~<0.06 and IApl ~<0.3 in the one-phase region, while 
the temperature range in the two-phase region is more restricted [1]. On 
the other hand, the effect of critical fluctuations on the equation of state 
can be neglected only when z is much larger than the so-called Ginzburg 
number Gi. This criterion suggests that critical fluctuations may be present 
even at temperatures twice the critical temperature [ 16]. Hence, to account 
fully for the effect of the critical fluctuations an asymptotic analysis is 
inadequate and a more complete account of the nonasymptotic effects of 
the critical fluctuations, including the crossover of the equation of state to 
regular behavior far away from the critical point, must be incorporated. 
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3. T H E O R Y  O F  T H E R M O D Y N A M I C  C R O S S O V E R  B E H A V I O R  

A theoretical approach for constructing a Helmholtz free-energy 
density that incorporates crossover from singular behavior asymptotically 
close to the critical point to regular behavior far away from the critical 
point has been developed by Chen et al. [15] based on earlier work of 
Nicoll co-workers [18-20]. In this approach one starts from the observa- 
tion that in the classical theory of critical phenomena, 3.4 Can be expanded 
in a Landau expansion of the form [ 15 ] 

A.~ol = (1/2 ) t M  2 + (1/4!) u A M  4 q- (1/5!) aosM 5 + (1/6!) ao6 M6 

+ (1/4!) a14tM 4 + (1/2!2!) a22tZM 2 . . .  (21) 

where the Landau variables t and M are related to the physical variables 
and m through two scale factors, ct and cp, 

t = c t z ,  M = c p m = c p ( A p - d l z )  (22) 

The two system-dependent constants e, and cp play the role of two system- 
dependent amplitudes in the asymptotic universal scaling-law behavior. 
The coefficients in the Landau expansion given b y  Eq. (21) are all syste m- 
dependent constants; the coefficient of the m 4 term has been written as a 
product of a coupling constant u and a parameter A that is related to the 
maximum cutoff wave number of the critical fluctuations [18-20]. It is 
then argued that the critical fluctuations renormalize the critical expansion 
into [15, 20] 

32r = (1/2) t M 2 Y ~  + (1/4!) u*tiAM4~2q/+ (1/5!) ao5 M 5 ~  5/2~t/~ql 

+ (1/6!) ao6M6~3~li 3/2 + (1/4!) a14 t M 4 j - ~  20111/2 

+ (1/2!2!) a22t2M2~--2~ql 1/2_ (1/2) t2S( (23) 

where Y-, @, ~//, ~ ,  and Jg are rescaling functions related to a crossover 
function Y by 

j - =  y(Zv-1)/3t, ~ = y(~ 2v)/Al, Gi [ = yv/a~] 

= y(Z~5-v)/zAl, Of" = (v /e f tA) (Y  ~/~1_ 1) I (24) 

Here v = f l ( 6 +  1)/3 is the critical exponent for the asymptotic critical 
power law of the correlation length r [ 1 ], while 

= u/u* (25) 
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where u*= 0.472 is a universal coupling constant [20]. Far away from the 
critical point the crossover function Y approaches unity and Eq. (23) 
reduces to the classical Landau expansion given by Eq. (21). We note 
that the first term asymmetric in the order parameter M in this Landau 
expansion is proportional to M 5. The reason is that the other asymmetric 
terms proportional to M, t2M, and M 3 are accounted for by a mixing 
transformation of the form [ 15, 20] 

with 

(26) 

t = ctr + c(c3A.~/c3M)~, M = cp(zlp - d~ z) + c(r (27) 

where the coefficient c determines the strength of mixing. We again note 
that in this approach the strength of the mixing is represented by one 
system-dependent coefficient c, while in Eq. (19) for AA this mixing is 
represented by two coefficients c3 and c4. 

Possible closed-form approximants for the crossover function- Y have 
been discussed by Tang et al. [26]. The simplest form is 

Y= {1 + ~[-(1 +A2/tc2) a`/2v- 1]} -~ (28) 

with 

~2 = t~-- + (1/2) u*AM2@ql (29) 

referred to as crossover model I by Tang et al. [26]. As shown by 
Luettmer-Strathmann et al. [17], this theoretical crossover model (with 
some slightly modified expressions for q/and • )  can be expressed in terms 
of parametric variables ? and ~b, such that 

t = ~ Z  -~2 1/v~/~ - ~ 2 / 2 )  ( 3 0 )  

M = (u*~A) -1/2 (~2v 71_ A 2 ) ( I  - ~)/4 F/~ Z (  . - (o)/2~ ~ (31) 

7 

AA,= Z a~F~(~b)f~(?) (32) 
i 1 

with 

and where 

t/= 2-7 /v ,  ~ = A l l / v  (33) 

z (~ )  = [(1 - a) ~'~'" + a(~2~ + A2),~/2] - ,  (34) 
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Fig. I. Range of improved crossover model for ethane 

corresponds to area inside solid curve. Range of cross- 
over model as previously implemcnted by Luettmer- 
Strathmann et al. [17] corresponds to area inside 

dashcd curvc. 

The explicit expressions for the coefficients ci and the functions Fi(~b ) and 
fi(?) are given in the paper by Luettmer-Strathmann et al. [17]. Near the 
critical point Eqs. (30) and (31) indeed reduce to the linear-model equa- 
tions, Eqs. (10) and (11), but Eq. (32) for A-~r remains slightly different 
from the linear-model expression, Eq. (13). However, it should be noted 
that the linear model is correct only in a perturbation expansion up to 
second order in e = 4 - d  [28, 29], where d is the dimensionality. Hence, 
the existence of a small difference with a comprehensive estimate of the 
effects of the critical fluctuations on the equation of state can be expected. 

As demonstrated in previous publications [15, 17], this crossover 
model, based on a six-term renormalized Landau expansion, represents the 
thermodynamic properties in a range of temperature and density 
approximately bounded by ;~-~< 2.2. For example, in the case of ethane 
this range corresponds to the region inside the dashed curve shown in 
Fig. 1. 

4. PHENOMENOLOGICAL CROSSOVER MODEL 

A phenomenological procedure for dealing with the crossover 
behavior of the Helmholtz free energy density has been proposed by 
Kiselev et al. [21, 22]. In this approach one starts from the revised and 
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extended parametric equation, Eq. (19), for zJA and modifies each term so 
that they all become analytic far away from the critical point, i.e., for large 
values of the variable r. For this purpose we use a crossover function R(q)  
defined by 

R(q) = 1 + qZ/(qo + q) (35) 

where qo is a universal constant, initially taken to be unity [21], and 
subsequently modified .to qo = 0.3 [22], while the variable q is related to 
the parametric variable r by 

q = rg (36) 

An expression for /14 that reduces to Eq. (19) for q ~ O  ( r ~ g  -1)  and 
becomes analytic for q ~  (r>>g -1)  is then obtained by the set of 
equations 

= r(1 - -  b2~ 2) (37) 

m = zip -- dl z = k R  ~ + !/2(q)r/~ (38) 

A A  = krZ-~R~(q)  a~Po(O) + Z "cir~iR-J~(q) ~P~(O) (39) 
i ~ l  

As demonstrated in previous publications [16, 21], the system-dependent 
coefficient g in the relationship between q and r is proportional to the 
inverse of the Ginzburg number Gi. 

The phenomenological crossover model, as defined by Eqs. (37) (39), 
differs from the crossover model previously employed by Kiselev et al. 
E21, 22] in the following aspects. First, we have added the terms i = 2 and 
3 with critical exponents /12 = 2/1~ and /i 5, which were absent in the 
previous formulation. Second, we have replaced the variable ( T -  Tc)/Tc by 
the modified variable ~ = ( T -  Tc)/T, as done in the work of Chen et al. 
[15, 20]. Theoretical arguments that l I T  is the more appropriate variable 
have been presented in the literature [24, 30, 31]. As we shall see in the 
next section the phenomenological crossover model with these modifica- 
tions is capable of representing thermodynamic-property data of fluids in a 
significantly larger range of temperatures and densities around the critical 
point than any crossover model proposed previously. 

Our phenomenological crossover model is specified by Eqs. (37)-(39), 
summarized explicitly in Appendix I, together with Eqs. (4) and (5). It 
contains the following universal constants: the critical exponents, the 
linear-model parameter b 2 a s  given by Eq. (13), and the crossover constant 
qo = 0.3. For the critical exponents ~, t ,  and/11 we adopt the values given 
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Table IV. Universal Critical-Region Constants 

a=0.11, fl =0.325 
q0 = 0.3, Ao= -1 
) , = 2 - a - 2 ~  
b 2 = (?~ - 2 f l ) / ~ ( 1  - 2 f l )  

e 1 = (5  - 2 e ) ( e  - f l ) ( 3  - 2e)/3(5fl  - e) 

e 3 = 2 - - ~ + 4  5 

A1 = 0 . 5 1  , A s =  1 .19 

A z = 2 A 1 ,  A 3 = A 4 = y + f l - - 1  

6 = (2 - ~ -/~)/B 
e = 2 7 + 3  fl - 1 
e2 = (5  - 2 e ) ( e  - 3fl)/3(5fl - e) 
e4 = (5  - 2 e 3 ) ( e  3 - 3 f l ) / 3 ( 5 f l  - e3)  

by Eq. (9). The value of the critical exponent A5 is not well-known [-18, 24, 
32, 33]; we have adopted the value 1.19 recommended by Zhang [34]. The 
values of all universal constants for the phenomenological crossover model 
are listed in Table IV. 

It is of interest to compare this phenomenological crossover model 
with the theoretical crossover model discussed in Section 3, which is based 
on a renormalized Landau expansion. For  this purpose it is illustrative to 
introduce a function Y(q) defined by 

~'(q) = [ q / R ( q )  ] ~ (40) 

As shown in Appendix II, the parametric expression (39) for AA can then 
be transformed into 

AA = (1/2) h l z~ 'M2J '~  + (1/4!) 604M4~2~/Z -k- (1/5!) glosMS~,@5/z~ff'~t[ 
+ (1/3!) & 1 3 ~ M 3 3 - ~ 3 / 2 ~ / / "  -t- (1/2) g t 2 1 " r 2 M y 2 ~ l / 2 ~ l [  1 

-- (1/2) 6oZ2X - (1/2) Cio z2 (41) 

with coefficients 6o and ~i~ also specified in Appendix II. The interesting 
point is that the functions 3-, ~ ,  q/, ~ ,  and ~ff are identical to the 
rescaling functions of Chen et al. [15] as given by Eq. (24), with the cross- 
over function Y replaced ~-. In addition, one new rescaling function, ~11, 
appears, which is defined by 

"~/1 = ~ ( 2 z J 3 -  v)/Ztl (42) 

On comparing Eqs. (23) and (41) we see a similar structure, but there are 
some differences. The first difference is that, unlike the coefficients as/in the 
expansion given by Eq. (23), the coefficients fifj in Eq. (41) also depend on 
the crossover function ~'. This is related to the fact that we have imposed 
the condition that Eq. (41) should reduce to the linear-model expression, 
Eq. (13), while the theoretical crossover model given by Eq. (23) does not 
precisely recover the linear model as mentioned in Section 3. We also do 
not have terms proportional to ~M 4, r2M 2 and M 6. The second difference 
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is that Eq. (41) contains asymmetric terms proportional to "cM 3 and z2M 
that are absent in the Landau expansion given by Eq. (21) and, hence, in 
Eq. (23). The reason is that in the crossover theory of Chen et al. [15, 20] 
these asymmetry effects are handled by the mixing transformation given by 
Eqs. (26) and (27), while in the phenomenological crossover model these 
asymmetry terms are entered directly. The third difference is the 
appearance of a term proportional to r 2, which modifies the analytic back- 
ground Ao(T) given by Eq. (5). Apart from the way in which the mixing of 
the scaling fields is treated, the two expansions, Eqs. (23) and (41), are 
rather similar. In fact it turns out that the effectiveness of either crossover 
model is determined largely by the choice of the crossover function Y or ~-. 
New results obtained by Jin et al. [35] for the theoretical crossover model 
confirm this conclusion. 

5. COMPARISON WITH EXPERIMENTAL DATA 

For a comparison of our extended phenomenological crossover model 
with experimental data, we consider here the thermodynamic properties of 
ethane and methane earlier analyzed by Luettmer-Strathmann [-17] and 
co-workers and by Jin et al. [36] in terms of the renormalized Landau 
expansion discussed in Section 3. As in these previous papers, all tem- 
peratures refer to the new international temperature scale of 1990 (ITS-90) 
[373. 

The phenomenological crossover model, defined by Eqs. (35)-(39) 
together with Eqs. (4) and (5), contains the following system-dependent 
constants: the critical parameters To, Pc, and Pc, the rescaled asymptotic 
critical amplitude k of the coexistence curve, the linear-diameter amplitude 
dl of the coexistence curve, the amplitude a of the asymptotic and 
amplitudes ci ( i=2  5) of the nonasymptotic terms in the parametric 
representation, the inverse rescaled Ginzburg number g, and also the 
coefficients A i in the background contribution to the pressure and the 
coefficients /z i in the background contribution to the caloric properties. 
The values of these system-dependent constants for ethane and methane 
are presented in Table V. 

For ethane we adopt the values of the critical parameters reported by 
Douslin and Harrison [38], with T c changed to ITS-90, 

Tc= 305.322 K, Po=4.8718MPa, pc=206.581kg.m 3 (43) 

as adopted earlier also by Luettmer-Strathmann et al. [17]. For methane 
we adopt the same critical parameters as used by Jin et al. [36]: 

Tc = 190.564 K, Pc = 4.5992 MPa, Pc = 162.380 kg. m-3 (44) 
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Table V. System-Dependent Constants in the Crossover Model for 
Ethane and Methane 

Ethane Methane 

Critical parameters 
Tc (K) 305.322 190.564 
Pc (MPa) 4.8718 4.5992 
Pc (kg. m-3) 206.581 162.380 

Critical coefficients 
k 1.1276 1.0498 
dl - 0.6046 - 0.4889 
a 18.525 16.426 
cl -8.9866 - 11.066 
c2 13.311 19,998 
c3 - 5.6546 - 3,7608 
Ca 5.9308 3,6660 
c5 -0.7666 -0,5386 

Inverse Ginzburg number 
g 1.1599 2.0066 

Background coefficients 
A 1 - 5.4681 -4.9847 
A2 15.606 13.171 
A3 --0.4667 0.1925 
A4 1.6179 0.2692 
/z2 -- 13.212 -8.1067 
/z3 -- 3.2387 - 4.6087 
#4 -- 26.795 3.2184 
/25 - 14.837 

These values of To and  Pc for me thane  are ident ical  to the values ob ta ined  by 
K le in r ahm and  W a g n e r  [39] ,  but  the cri t ical  densi ty  Pc = 162.380 k g - m  -3 
is s l ightly lower  than  the value p c = 1 6 2 . 6 6 0  k g . m  -3  repor ted  by  
K l e i n r a h m  and  Wagner .  This small  difference is re la ted to the presence of  
an a sympto t i c  s ingular  behav io r  of the coexistence curve pred ic ted  by  the 
scaling laws [24] .  

Except  for the calor ic  b a c k g r o u n d  coefficients #;, all o ther  system- 
dependen t  cons tan ts  have been de te rmined  from a fit of the crossover  
mode l  to the exper imenta l  P-p-T da t a  ob ta ined  by  Dous l in  and Har r i son  
[38 ]  for e thane  and  to the exper imenta l  P-p-T da t a  ob ta ined  by W a g n e r  
and  co-workers  [40, 41]  and  by Trappen ie r s  et al. [42 ]  for methane.  Wi th  
es t imated  errors  in pressure,  t empera ture ,  and  densi ty  as small  as 
a v = 0 . 0 0 0 0 5  M P a ,  a x = 0 . 0 0 1  K,  and  o o = 0 . 1 5  k g - m  3 [17, 36] ,  we find 
tha t  the equa t ion  represents  the exper imenta l  pressure  da t a  with a reduced 
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chi-square of 3.7 for ethane and of 3.6 for methane in a range of tem- 
peratures and densities bounded by 

r + 1 .2z lp  2 ~< 0.5  and T>~ Tm (45) 

where Tr~ = 284 K for ethane and Tm = 178 K for methane. This range is 
shown in Fig. 1 for ethane and in Fig. 2 for methane. Percentage deviations 
of the experimental pressures from the calculated pressures are shown in 
Fig. 3 for ethane and in Fig. 4 for methane. These percentage deviations are 
less then 0.15 % inside the region specified by Eq. (45) and increase up to 
0.254).35 % at the boundary. These pressure deviations are not as small as 
those found by Luettmer-Strathmann et al. [17] for ethane and by Jin et 
al. [36] for methane, but the present crossover model covers a significantly 
larger temperature range, as shown in Figs. 1 and 2. The pressure 
deviations are also not as small as those corresponding to the empirical 
multiparameter analytic global equation developed by Setzmann and 
Wagner 1-43] for methane, but the crossover model yields a significantly 
better representation of the caloric properties near the critical point as 
shown below. 

The coefficients #o and /~1 in Eq. (5) determine the zero points of 
entropy and internal energy and are no t  considered here. The coefficients 
/~i for i~> 2 determine the backround contributions to the isochoric specific 
heat and can be determined from a fit to specific-hear or sound-velocity 
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data. For ethane we determined the coefficients #2 and ]23 from the c~ data 
obtained by Shmakov [44] close to the critical point and the coefficient #4 
from sound-velocity data obtained by Terres et al. [45] and by Tsumura 
and Straty [46] far away from the critical point. A comparison between 
the experimental c~ data of Shmakov and the values calculated from the 
revised crossover model is shown in Fig. 5. The critical temperature implied 
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by the cv data of Shmakov appears to be 0.033 K higher than the value 
reported by Douslin and Harrison for To. When a correction is made for 
this temperature difference, the cv data of Shmakov are reproduced with an 
average deviation of 1.8 %, which is within the experimental accuracy. A 
comparison with experimenta~ sound-velocity data for ethane is shown in 
Figs. 6 and 7. The crossover model represents the sound-velocity date 
obtained by Tsumura and Straty [46] with a standard deviation of 1.6% 
including the near-critical region, where the classical global equation 
developed by Friend et al. [47] cannot be used. The average deviation of 
the sound-velocity data obtained by Terres et al. is about 2 %. Tetras et al. 
themselves claim an accuracy of only 0.3 %, but the deviations found in our 
analysis are of the same order as those from the equation of Friend et al. 
[47]. As shown in Fig. 7, there are also some systematic deviations 
between the sound-velocity data of Terres et al. [45] and those of Tsumura 
and Straty [46]. A comparison with experimental Cp data of Bier et al. 
[48] and of Miyazaki et al. [49] is shown in Figs. 8 and 9. At a pressure 
of 4.473 MPa a small systematic deviation from the experimental data of 
Miyazaki et al., connected with a difference of the actual locations of the 
experimental and calculated cp maxima, is observed. 

For methane the coefficients #2 and #3 were determined from a fit to 
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experimental data obtained by Tsumura  and Straty 
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perature associated with the c~ data of Anisimov et al. by this amount. 
Deviations of the experimental c~ values from those calculated with the 
crossover model are shown in Fig. 10. Deviations of the experimental 
sound-velocity data obtained by Gammon and Douslin [53], Straty [54], 
and Trusler and Zarari [55] for methane are shown in Fig. 11. The 
crossover model represents the specific-heat data and the sound-velocity 
data with a standard deviation of 1.8 %, which is within the experimental 
accuracy. The actual sound-velocity values for methane at various 
temperatures are plotted as a function of density in Fig. 12. That a good 
agreement is obtained even at a temperature as high as 373.15 K and at 
densities that are actually outside the range indicated in Fig. 2. 

A comprehensive global analytic equation of state for methane has 
recently been developed by Setzmann and Wagner [43]. This analytic 
equation of state yields a very good representation for the thermodynamic 
properties of methane, but it fails to account for the divergent behavior of 
the isochoric specific heat at the critical point, which in turn causes the 
sound velocity to vanish at the critical point. The sound velocity of 
methane at the near-critical temperature T =  190.572 K is shown in Fig. 13. 
The behavior of our crossover model near the critical point is identical to 
that of Jin et al. [36], while the analytic equation of Setzmann and Wagner 
[43] fails to follow the rapid decrease in the sound velocity in the near- 
vicinity of the critical point. This phenomenon is illustrated even more 
dramatically in Fig. 14, where a comparison is made with new experimental 
c~ data obtained by Anisimov et al. [52]. 
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Fig. 15. The isobaric specific heat Cp of methane at various pressures as a function of 
temperature. The filled symbols indicate experimental data obtained by Kasteren and 
Zeldenrust [57], the open symbols experimental data obtained by Jones et al. [56 ], and the 
curves represent values calculated with the crossover model. 
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A comparison with experimental data for the isobaric specific heat of 
methane is shown in Fig. 15. Good agreement between calculated values 
and experimental data of Jones et al. [-56] and experimental data of 
Kasteren and Zeldenrust [57] for the isobaric specific heat is observed. 

Up to this point we have restricted the analysis of our crossover model 
to the one-phase region. However, it can also be extrapolated to represent 
the thermodynamic surface in the two-phase region down to temperatures 
about 15-20 % below the critical temperature. A comparison of our cross- 
over model with experimental vapor and liquid density data is shown in 
Figs. 16 and 17, and a comparison with vapor-pressure data is shown in 
Figs. 18 and 19. One problem with scaled equations of state used in the 
past is that the agreement between experimental and calculated values 
deteriorated very rapidly as soon as the equations were extrapolated 
outside their near-critical range of validity. From Figs. 16-19 we see that 
with a crossover equation of state, the difference between experimental 
and calculated values increase only gradually upon extrapolation. 

6. DISCUSSION 

The critical point is a point of marginal thermodynamic stability and 
the thermodynamic surface of fluids has a singularity at the critical point. 
This singularity can be characterized by scaling laws with universal 
exponents and universal scaling functions in the immediate vicinity of the 
critical point. However, the effects of long-range fluctuations, associated 
with enhanced values of the compressibility, are not restricted to the 
immediate vicinity of the critical point but extend over a large range of 
temperatures and densities around the critical point [-16]. To deal with the 
thermodynamic behavior of fluids in the extended critical region, we have 
developed an equation of state that includes the crossover from singular 
behavior near the critical point to regular behavior far away from the 
critical point. This goal has been accomplished by considering an expan- 
sion around the critical point, retaining a finite number of terms and 
demanding that each term becomes an analytic function for large values of 
a parametric variable that yields a measure of the distance from the critical 
point. By comparing this parametric model with experimental ther- 
modynamic-property data, we have demonstrated that such a crossover 
model can indeed account for the behavior of thermodynamic properties of 
fluids in a large range of temperatures and densities around the critical 
point. 
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APPENDIX I. THE H E L M H O L T Z  FREE-ENERGY DENSITY IN 
THE PARAMETRIC F O R M  

dA(r ,  O)=kr2-~R~(q)  agto(O)+ ~ cir~iR ~'(q)gti(~9) (A1) 
i = l  

= r(1 - b232) (A2) 

m = A p - d l z = k R  /~+1/2(q) r~O (A3) 

The  func t ions  ~o(~9) a n d  ~1 (0 )  are 

gto(O ) = (1/2b4)[Zfl(b 2 - 1 )/(2 - cr + 2fl(27 - 1)(1 - b2~92)/?;(1 - ~) 

+ (2fl - 1)(1 - b23Z)z/e]  (A4) 

gt~(O) = Fl /2b2(1 - c ~ + d l ) ] [ ( 7 + d l ) / ( Z - ~ + A a ) - ( 1  - 2//) b202] (A5) 

g~2(O) = [1/2b2(1 - c ~ + A 2 ) ] [ ( y + A 2 ) / ( 2 - c ~ + A 2 ) - ( 1  -2 f l )b2O 2] (A6) 

g~3(0) = 0 - (2/3)(e  - f l )b20 B + (1 - 2fi)e~ba~gs/(5 - 2e) (A7) 

~ 4 (3 )  = (1/3)b2~93 + (1 - 2fl)ezb4~gs/(5 - 2e) (A8) 

~Ys(O) = (1/3)b~O 3 + (1 - 2fl)e4b405/(5 - 2e3) (A9) 

where  

d 1 = va~ (A10) 

d 2 = 2 z l  1 ( A l l )  

Z[3 = J 4  = Y -}- fl  - -  1 (A12) 

ds=v~o5 (A13) 

b 2 = (7 - 2fl)/2(1 - 2fl) ( A I 4 )  

e = 2 7 +  3 f l -  1 (A15)  

el = (5 - 2e)(e - fl)(3 - 2 e ) / 3 ( 5 f l -  e) (A16)  

e2 = (5 - 2e)(e - 3fl)/3(5fl - e) (A17) 

e 3 = 2 - ~ + A 5  (A18) 

e4 = (5 - 2e3)(e 3 - 3fl)/3(5fl - e3) (A19) 

The  c rossover  f u n c t i o n  R(q)  is 

R(q)  = 1 + q2/(qo + q) ( a 2 0 )  

wi th  q = rg. 



28 Kiselev and Sengers 

APPENDIX II. THE H E L M H O L T Z  FREE-ENERGY DENSITY 
IN THE R E N O R M A L I Z E D  FORM 

We introduce a new function, 

Y ( q )  = [ q / R ( q )  ] "J: (A21) 

and replace the function R ( q )  in Eqs. (A2) and (A3) by Y(q), so that  

0 2  = ( m 2 / r k 2 g t  - 2 f l )  ~ ( 1  - 2 f l ) / z / 1  (A22) 

a~d 

r = z + (b2m2/k2g I 2~) ~(1 2/~)/al (A23) 

If  we then substitute Eqs. (A22) and (A23) into Eq. (A1) and use the 
expressions (A4)- (A9)  for ~ ( 0 ) ,  we obtain 

AA = (1/2) 4a2'rm 2 ~(a - o: - 2a~/a~ + ( 1 / 4 ! )  ~o4 m4 ~(2 - -  c~ - -  4fl)/dt 

+ (1/5!) g t o s m S Y  ~2-~' 5~+~5)/~ + (1/3!) gta3"cm3y ~ : 2 - ~  

+ (1/2) 4~a r~m~ - ( t - ~  2~)/~1 (1/2) 4oZ2~ " ~,/A, (A24) 

where the coefficients 4 o. are given by 

4a2 = ( 2 a f l / k b " g  t -2~ ~){2(b 2 _ 1)/(2 - a) + (27 - 1)/7(1 - a) 

+ [ca b Z / 2 a g ~ l ( 1  - ~ + A a)] [2(7 + At)/(2 - c~ + A~ ) + (1 -- 2fl)] ~" 

+ [ c 2 b 2 / 2 a g ~ 2 (  1 - ~ + ~Jz)] [2(7 + A 2 ) / ( 2  - o~ + A2)  + (1 -- 2fl)] ~-2} 

(A25) 

404 = [4! af l (b  2 - 1 ) / k 3 g  2 - 4 f l -  ~(2 - a ) ]  

x { 1 + [ca b2(2 - O~)/2ag'~(1 - ~ + A~)(b 2 - 1)] 

• [(7 + z l a ) / ( 2 -  ~ + zl,) + (1 - -2f l ) ]  

+ [c2b2(2 - ~ )/2aga2(1 - c~ + A2)(b z - 1)] 

x [(7 + A2)/(2 - a + A2) + (1 -- 2fl)] ~2} (A26) 

gto5 = ( 5 ! b 4 / k 4 g  z 5~-~+~S){c5[1/3 + (1 - 2 f l ) e 4 / ( 5  - 2e3)-] 

+ ( c 4 / g a 4 - A s ) [ 1  - 2(e - f l ) /3  + (1 - 2 ~ ) e 2 / ( 5  - 2e)]  ~'~a' Js)/~, 

+ ( e 3 / g ~ 3 - ' J ~ ) [ 1  - 2(e - f l ) /3  + (1 - 2 f l ) e , / ( 5  - 2e)]  ~ 3  ~5)/~}  

(A27) 



Thermodynamic Properties of Fluids in the Critical Region 29 

glt3 = ( 2 b 2 / k 2 g 2 -  3e ~+zfS)[c s + (c4/g ZI4 "d5) ~'-(z]4--~5)/Zll 

+ ( c 3 / g  ~3 - zs)(6 + 2fl - 2e) !7" ~3 - z,~/a, ] (A28) 

a21 = 2c4 g2/~ + 2~- 1 (A29) 

gt o = ( a k g ~ / b 2 ) { 7 ( 7  - 1)/~(1 - ct)(2 - c~) 

- ( q / a g Z t ) [ ( 7  + A,)/(1 - c~ + A 1)(2 - -  ~ + A t ) ]  ~- 

+ (c~ /agZ2) [ ( y  + A2)/(1 -- ce + A2)(2 - e + A2) ] 17 "2 } (A30) 

In t roducing  rescaling functions in analogy to rescaling functions previously 
in t roduced by Chen et al. [15] ,  

~ -  = 9 ( 2 - -  2r = ~ ( 2 - -  I/v)/w 

~--. ~ ( 2  -- ~ --  6,8)[Atl = ~"  --rT#.o 

all = ~ 2 - ~ l / 3 m =  ~1/~o 

U" = ~.(2As-v)/2zl = ~(o,5- */2)/o~ 

~ / ]  ~ -  ~ " ( 2 A 3  --  v ) / 2 a l  = ~ ( 4  - -  5 a  --  6 ,g) /e )v  

off = ~ - ~ / ~ ' -  1 = f" ~ /~ ,v  1 

(A31) 

(A32) 

(A33) 

(A34) 

(A35) 

(A36) 

and defining a rescaled order  parameter ,  M = c p r n ,  we obta in  f rom 
Eq. (A24) 

z17f = (1 /2  )?q2 z m 2 J ~  + (1/4!) 6o4M4~2'~/q- (1/5!) g t o s M S ~ S / 2 Y ~  

+ (1/3!) a13"t'M3~-~3/2ff/" -{- (1/2) a21T2M~2~l/2~/I  ~ 1 

- (1/2) a 0 g 2 ~ / "  - -  (1/2) a o ' [  "2 (A37) 

with 

^ - -  ~ 2 ^ _ _ ~  2 ~ 5 
a 1 2  - -  al2/Cp, a04 -- a04/co ,  dos = aos/Cp 

gl 3 * 
l~/13 = 13/Cp, a21=a21/cp, a o = a o  

(A38) 

In the limit q>> 1 ( Y ~  1), Eq. (A37) takes the form 

3A = (1/2) a 12"cM2 + (1 /4 ! )  a04 M4 + ( i /5 ! )  a05 M 5 

+ (1/3!) a13 "rM3 4- (1/2) a21 " c 2 m -  (1/2) ao'C 2 (A39) 

where the coefficients a12 , ao4, aos, al3, a21, and ao are determined by Eqs. 
(A25)-(A30)  and  (A38) with Y =  1. The classical theory will be valid as 
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long as the s ingular  specific heat  A +z ~ is much  smal ler  than  the classical 
j u m p  3a~2/ao4. This cond i t ion  yields 

z >> Gi (A40) 

where the G i n z b u r g  pa ramete r ,  assoc ia ted  with the specific-heat s ingular i ty  
[16] ,  is 

G i - ~ g  l [y (y  _ 1) bZ(b 2 - 1)/fl(2 - c~) ~2]1 /~  (A41) 

with 

6 o = 2(b 2 -  1 ) / ( 2 - ~ ) +  ( 2 y -  1 ) / 7 ( y -  1) (A42) 
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