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An Improved Parametric Crossover Model for the
Thermodynamic Properties of Fluids in the
Critical Region
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An improved parametric equation for the thermodynamic properties of fluids is
presented that incorporates the crossover from singular thermodynamic
behavior in the immediate vicinity of the critical point to regular thermo-
dynamic behavior far away from the critical point. Based on a comparison with
experimental data for ethane and methane, it is demonstrated that the crossover
model is capable of representing the thermodynamic properties of fluids in a
large range of temperatures and densities around the critical point.
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1. INTRODUCTION

A characteristic feature of thermodynamic states of a fluid in the vicinity of
the vapor-liquid critical point is the presence of long-range fluctuations
in the density. The intensity of these fluctuations diverges at the critical
point. As a consequence, the thermodynamic surface of fluids exhibits a
singularity at the critical point. The asymptotic singular critical behavior of
the thermodynamic properties can be described in terms of scaling laws
with universal exponents and universal scaling functions [1, 27. In order to
obtain an equation of state for fluids in the immediate vicinity of the
critical point, one commonly introduces two parametric variables, r and 3,
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such that r measures a distance from the critical point [1-4]. By incor-
porating the critical singularities as power laws in terms of the variable r,
while the § dependence is kept analytic, one avoids any spurious
singularities in the one-phase region away from the critical point [3] and
can formulate an equation of state that is fully consistent with the
theoretical predictions for the critical-point singularity. A scaled parametric
equation most commonly adopted is the so-called linear model originally
introduced by Schofield et al. [5].

Fluids near the critical point satisfy the same asymptotic scaling laws
as symmetric three-dimensional Ising-like systems [1,2]. However, a
serious problem is that these asymptotic scaling laws are valid only in an
extremely small range of temperatures and densities around the critical
point [6]. Attempts have been made to extend the asymptotic linear-model
equation of state by including a confluent singuiarity and by incorporating
a revision that accounts for lack of vapor-liquid symmetry [7-107. These
more general parametric equations of state have been used to represent
the thermodynamic properties of many fluids near the critical point
[1, 4, 8-13]. Nevertheless, the range of these equations of state is still
sufficiently restricted so that they have not yet received wide acceptance for
practical applications in the engineering literature [14].

On the other hand, it has become evident that critical fluctuations are
actually present in fluids in a very large range of temperatures and densities
[15, 16]. Hence, to account for the effects of these critical fluctuations on
the equation of state, it is necessary to consider also the nonasymptotic
critical behavior of the thermodynamic properties including the crossover
to regular classical behavior far away from the critical point.

A parametric model that incorporates crossover from singular
behavior near the critical point to regular behavior far away from the
critical point has recently been developed by Luettmer-Strathmann et al.
[17]. This parametric model is based on a theory of nonasymptotic critical
behavior initiated by Nicoll and co-workers [18, 197 and further developed
by Chen and co-workers [ 15, 20]. The theoretical approach starts from a
classical Landau expansion, which is renormalized to account for the
critical fluctuations.

A phenomenological attempt to formulate a parametric model that
also accounts for the crossover to regular behavior far away from the
critical point has been made by Kiselev and co-workers [4, 21, 22]. We
have continued a study, initiated by Anisimov et al. [16], comparing this
phenomenological crossover model with the theoretical results for the
crossover behavior mentioned above. This study has led us to introduce
some modifications into the earlier crossover model of Kiselev et al. In this
paper we show that the improved phenomenological parametric crossover
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model not only is capable of representing the thermodynamic properties of
fluids at temperatures up to temperatures as high as twice the critical
temperature, but also accounts for the thermodynamic properties in the
two-phase region in a substantial range of temperatures below the critical
temperature.

We proceed as follows. In Section 2, we review the known asymptotic’
scaling-law behavior of the thermodynamic properties as well as some
previous attempts to include correction terms to account for the lack of
vapor-liquid symmetry and for the presence of a confluent singularity.
In Section 3, we summarize some issues related to the expected crossover
behavior of the Helmholtz free energy. In Section4 we formulate a
phenomenological parametric crossover model for the Helmholtz free
energy. This crossover model is a modification of a phenomenological
crossover model earlier proposed by Kiselev et al. [4, 21, 227]. This model
is compared with experimental thermodynamic-property data in Section 5.
Our results are summarized in Section 6.

2. ASYMPTOTIC SCALING-LAW BEHAVIOR

Let V be the volume, p the density, T the temperature, u the chemical
potential, y = (0p/0u)r a susceptibility, A the Helmholtz free energy and C,
the heat capacity at constant volume. These thermodynamic quantities are
made dimensionless with the aid of the critical temperature T, critical
density p., and critical pressure P, [1]

T=-TJT, /~3=p/pc, ﬁ=uchc/PcT} "
T=xP.T/p; A=AT, VP T,  ¢,=CT./VP,
In addition, we define
t=T+1=(T-T,)/)T, dp=p—1 (2)
Afi=p— po(T) (3)
A4 =4 — pjio(T) — Ao(T) 4)

where jiy(T ) and Ay(T) are analytic functions of temperature such that
Afi=0 and 4,= —1 at the critical point. The idea is that 44 incorporates
the effect of the critical fluctuations, while the functions fi(T) and A,(T)

are in practice represented by truncated Taylor expansions of the form
[15,17]

A(M)=Y we,  AfT)=—1+3 4,0 (5)

j=0 j=1
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According to the theory of critical phenomena, the Helmholtz
free-energy density A/V satisfies close to the critical point a scaling law
of the form [1, 2]

A4 = u [ folun/1u ) (6)

where the scaling fields u, and u, are asymptotically proportional to t and
Afi, respectively, while «, f§, and § are critical exponents. In fact, Eq. (6) is
the first term of a so-called Wegner expansion [23, 24]

AT =1l St )+ 3 el )| 00
i=1

where, more generally, u, and u, are analytic functions of T and 4y, while
¢; are additional system-dependent coefficients. As a consequence, various
thermodynamic properties exhibit power-law behavior when the critical
point is approached along the critical isochore (4p =0), along the critical
isotherm (7 =0) or along the coexistence curve (dp = Ap.,.). The first two
terms of these power-law expansions for a number of properties are listed
in Table 1. The critical exponents are related by

2—a=p(0+1), y=2—oa—28 (8)

The critical exponents, as well as the scaling functions f; in Eq. (7), are
universal. Fluids belong to the universality class of three-dimensional
Ising-like systems with exponent values [1, 4, 25]

x=0.11, f=0325, A4,=051 9)

Universality of the scaling function f; in Eqgs. (6) and (7) implies that only
two of the amplitudes A", 4=, I'*, I'", D, and B can be treated as
system-dependent constants. Similarly, universality of the scaling function

Table L. Critical Power-Law Expansions

Property Power-law expansions Path
&p= —TH324/6T7), At 1+ AF T+ ) Ap=0,720
ép= ﬁTZ(aZZ/aTZ),, A |7 (L + 47 7+ ) A4p=0,71<0
T=(0p/0f)r I+t + ) 4p=0,720
7=(0p/op)r I 77 A+ Iy el ) Ap=A4p e, 1<0
Aji=(044/04p)r £D|4p)?(1+ Dy |dp| "7 + --1) =0

14p ol B/’ (1+ Bylt| "+ ) <0
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f1 in Eq. (7) implies that only one of the correction-to-scaling amplitudes
Af, A7, IS5, I'T, Dy, and B, can be treated as a system-dependent
constant.

In order to formulate an equation of state based on the asymptotic
scaling-law behavior in Eq. (6), one introduces two parametric variables r
and & There are several ways in which this can be done, but the parametric
equations most commonly adopted are [3, 4]

t=r(1—b*9%) (10)
Ap=krf3 (11)
Aji=ar’9(1 — §2) (12)

where a and k are the two system-dependent constants that enter into the
asymptotic scaling-law behavior, while »? is a universal constant. In the
original formulation, Eqs. (10) and (12) defined the transformation, while
Ap was then assumed to be linear in $ [5]. In practice, though, we use
Egs. (10) and (11) to convert the physical variables 7 and Ap into the
parametric variables r and 9. ’

The relationships between the amplitudes of the asymptotic critical
power laws and the linear-model constants a, k, and b are presented in
Table II. The universal constant b? is selected so as to obtain agreement
with the known theoretical values of the universal relations among the
amplitudes of the asymptotic critical power laws. A possible choice is

b*=(y—2p)/y(1—28)=1.359 (13)

which corresponds to the so-called restricted linear model [3-5]. With this
value of b? we obtain

AT[AT =052, I'*/~ =487, A*I'*/B*=0056, I'*DB’~'=169
(14)

Table II.  Amplitudes of Critical Power Laws

Asymptotic critical amplitudes

AT =aky(y —1)/20b* I't=kja

D =a(b/k)? (b>—1)/b B=k/(h?—1)f

A4 =[(1=28)/(y— )] (B*— 1) r=jr+=0-28)6"-1)2(y—1)
Dr+Ré-1=po-3(p2 -1y -! AT+ B2 =y(y — 1)(B2 — 1Y 20b?

Correction-to-scaling amplitudes

A =TV +d)apy—1),  I'f=-cifa,  By=I26°-1)f"
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in good agreement with the theoretical values as reviewed by Tang et al.
[26].

The linear-model equations imply for the Helmholtz free-energy
density

AA = akr* 2P (9) (15)

where the function ¥Y4(3) is given in Table HI. It turns out that the
asymptotic scaling-law behavior applies only in an extremely small range
around the critical point [6]. To represent actual thermodynamic-property
data in the critical region, it is necessary to revise the asymptotic scaling-
law behavior to account for lack of vapor-liquid symmetry and to extend
it by including the first correction term in the Wegner expansion given by
Eq. (7). Two revised and extended scaled parametric equations of state
have been widely used for this purpose, namely, one proposed by Balfour
et al. [7] and one proposed by Kiselev [9]. Here we consider the latter
version.

It is first noted that a more appropriate order parameter for a fluid
near the critical point is not Ap itself, but

m=A4p—dyt (16)

where d, is a system-dependent constant related to the diameter of the
coexistence curve [4, 15]. Furthermore, the scaling fields », and u, in
Eq. (6) are not simply proportional to T and A, but should be taken as
linear combinations of t and 4ji, a procedure often referred to as mixing
of the scaling fields. Finally, the leading correction terms in the Wegner
expansion given by Eq. (7) must be incorporated. A revised and extended
parametric model accounting for these effects can be defined by the
following set of equations [9, 10]:

1=r(l —b*9?) (17)

m=Ap—d,t=kr’3 (18)
5

A= [a%(m 3 cr ) | (19)
i=1

Table IIl. The Functions ¥,(3) in the Parametric Model

Po(8) = (1/26%)[2B(F* — 1)(2 — 2} + 2By — 1)(1 — B>F)p(1 — ) + (2f — 1)(1 — b*$*)?/a]
() =[17202(1 — e+ A)I[(7 + 4,2 —a+ 4,)— (1 -25)b°%]

o(8) = [1/26%(1 —a + A) [y + 4:)/(2 — a+ 4;) — (1 = 25)b*9?]

Po(9)=8— (2/3)(e— B)b?% + (1 —2B)e, 6*9°/(5 —2¢)

P (9)=(1/3)b29 + (1 — 2B)e,b*95/(5 — 2¢)

P (9) = (1/3)b*%° + (1 — 2B)e,b*3°/(5 — 2e3)
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with

4,=24,, d3=4,=y+f-1 (20)

while 45 is the exponent of the asymmetric correction term in the Wegner
expansion, sometimes also designated as A, [15, 17, 25]. The explicit
expressions for the functions ¥,(3) in Eq. (19) are presented in Table IIL
The functions ¥,, ¥,, ¥,, and ¥, are identical with the functions
designated ¥,, ¥., ¥4, and ¥; in previous publications [9, 10, 13]. It
should be noted that the terms for i=2 and i =15 were not included in the
previous work of Kiselev and co-workers but have been included here for
use in formulating our parametric crossover model in Section 4. The terms
with exponents A4,, 4,, and 45 in Eq. (19) represent correction terms that
appear in the Wegner expansion. However, the terms with 45 and 4, in
Eq. (19) do not correspond to any terms in the Wegner expansion but
originate from the mixing of the scaling fields in the expressions for the
asymptotic scaling law given by Eq. (6) [9, 10]. With ¢,=c¢s=0, the
revised and extended linear model defined by Eqgs. (17)-(19) has been used
to represent the thermodynamic properties of number of fluids in the
critical region [10, 13,27]. For the ratios of the correction-to-scaling
amplitudes, this model implies A}'/I")" =0.65 and B,/I'} =0.84 to be
compared with the theoretical values A;/I'["!=095+003 and
B,/ =094+02 [26].

An alternative revised and extended parametric model, originally
proposed by Balfour et al. [7], has been used extensively by Sengers
and co-workers [1, 8, 11, 12]. The primary difference is that in the latter
version the mixing of the scaling field is represented by one system-
dependent parameter ¢, while in Eq. (19) two system-dependent constants
¢; and ¢, account for this mixing. A comparative study of the two revised
and extended parametric equations of the state has been made by Aizpiri
et al. [14].

The range of applicability of either version is still limited and corre-
sponds roughly to 7<0.06 and |4p| <0.3 in the one-phase region, while
the temperature range in the two-phase region is more restricted [1]. On
the other hand, the effect of critical fluctuations on the equation of state
can be neglected only when 7 is much larger than the so-cailed Ginzburg
number Gi. This criterion suggests that critical fluctuations may be present
even at temperatures twice the critical temperature [ 16 ]. Hence, to account
fully for the effect of the critical fluctuations an asymptotic analysis is
inadequate and a more complete account of the nonasymptotic effects of
the critical fluctuations, including the crossover of the equation of state to
regular behavior far away from the critical point, must be incorporated.
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3. THEORY OF THERMODYNAMIC CROSSOVER BEHAVIOR

A theoretical approach for constructing a Helmholtz free-energy
density that incorporates crossover from singular behavior asymptotically
close to the critical point to regular behavior far away from the critical
point has been developed by Chen et al. [15] based on earlier work of
Nicoll co-workers [18-207. In this approach one starts from the observa-
tion that in the classical theory of critical phenomena, 44 can be expanded
in a Landau expansion of the form [15]

Ay = (1/2)tM? + (1/41) udM* + (1/5!) ags M + (1/6!) aoe M ®
+(1/41) @ tM* + (1/2121) ap 2 M2 . (21)

where the Landau variables ¢ and M are related to the physical variables
7 and m through two scale factors, ¢, and ¢,

t=c,1, M=c,m=c,(4p—d, 1) (22)

The two system-dependent constants ¢, and ¢, play the role of two system-
dependent amplitudes in the asymptotic- universal scaling-law behavior.
The coefficients in the Landau expansion given by Eq. (21) are all system-
dependent constants; the coefficient of the M* term has been written as a
product of a coupling constant » and a parameter A that is related to the
maximum cutoff wave number of the critical fluctuations [18-20]. It is
then argued that the critical fluctuations renormalize the critical expansion
into [15, 20]

A4, = (1)2) IM*T D + (1/4) w*aAM*D*U + (1/5!) aps M°D°* VU
+(1/61) ag MSD>U*? + (1/41) a  tM*T D*UM?
+(1/212)) an, M2 T *9U 2 — (1)2) PH (23)

where 7, 2, U, ¢, and A are rescaling functions related to a crossover

function Y by
T = Y(zV—l)/Al’ G = Y(Y*ZV)/AI’ Q= YV
(24)

Y= YOI o — (Y A)(Y N~ 1)

Here v=pf(6+1)/3 is the critical exponent for the asymptotic critical
power law of the correlation length & [1], while

a=ufu* (25)
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where u* =0.472 is a universal coupling constant {20]. Far away from the
critical point the crossover function Y approaches unity and Eq.(23)
reduces to the classical Landau expansion given by Eg. (21). We note
that the first term asymmetric in the order parameter M in this Landau
expansion is proportional to M°. The reason is that the other asymmetric
terms proportional to M, (°M, and M? are accounted for by a mixing
transformation of the form [15, 20]

AA = A4, — (344, )0M),(044,/01),, (26)
with
t=c,r+c(8AZr/8M)t, M=cp(Ap*d1r)+c(0A;1',/6t)M (27)

where the coefficient ¢ determines the strength of mixing. We again note
that in this approach the strength of the mixing is represented by one
system-dependent coefficient ¢, while in Eq. (19) for 44 this mixing is
represented by two coefficients ¢, and ¢,.

Possible closed-form approximants for the crossover function- Y have
been discussed by Tang et al. [26]. The simplest form is

Y {1—|—u[(1+/12/K 41/2v 1]}—1 (28)
with
K2=tT + (1)2) u* AM>TU (29)

referred to as crossover model I by Tang et al. [26]. As shown by
Luettmer-Strathmann et al. [17], this theoretical crossover model (with
some slightly modified expressions for # and #") can be expressed in terms
of parametric variables 7 and ¢, such that

t=FZ7CTI(1—¢72) (30)
M = (u*id) =2 (7 + A2)— s 5B Z 1= w)/20 4 (31)
7
=L &F @) /i) (32)
with
}’]:2‘*'})/\}, w:AI//v (33)
and where

Z(7)= [(1 —@)F™ +a(F> + A%)*2] ! (34)
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Fig. 1. Range of improved crossover model for ethane
corresponds to area inside solid curve. Range of cross-
over model as previously implemented by Luettmer-
Strathmann et al. [17] corresponds to area inside
dashed curve.

The explicit expressions for the coefficients ¢, and the functions F;(¢) and
f:(F) are given in the paper by Luettmer-Strathmann et al. [17]. Near the
critical point Egs. (30) and (31) indeed reduce to the linear-model equa-
tions, Egs. (10) and (11), but Eq. (32) for 44, remains slightly different
from the linear-model expression, Eq. (13). However, it should be noted
that the linear model is correct only in a perturbation expansion up to
second order in e=4—d [28,29], where d is the dimensionality. Hence,
the existence of a small difference with a comprehensive estimate of the
effects of the critical fluctuations on the equation of state can be expected.

As demonstrated in previous publications [15,17], this crossover
model, based on a six-term renormalized Landau expansion, represents the
thermodynamic properties in a range of temperature and density
approximately bounded by 7~ <2.2. For example, in the case of ethane
this range corresponds to the region inside the dashed curve shown in
Fig. 1. ’

4. PHENOMENOLOGICAL CROSSOVER MODEL

A phenomenological procedure for dealing with the crossover
behavior of the Helmholtz free energy density has been proposed by
Kiselev et al. [21, 227. In this approach one starts from the revised and
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extended parametric equation, Eq. (19), for 44 and modifies each term so
that they all become analytic far away from the critical point, i.e., for large
values of the variable r. For this purpose we use a crossover function R(gq)
defined by

R(g)=1+4¢%(q,+q) (35)

where g, is a universal constant, initially taken to be unity [21], and
subsequently modified to g,=0.3 [22], while the variable ¢ is related to
the parametric variable r by

qg=rg (36)

An expression for 44 that reduces to Eq. (19) for g—0 (r<g™!) and
becomes analytic for ¢—» o (r>g~') is then obtained by the set of
equations

1=r(1-5%3?) (37)
m=dAp—d;t=kR PT'?(q)rk9 (38)
AA =kr*~*R%(q) [a?’o(g) + 25: c;r"R™4(q) ‘17,-(9)] (39)

As demonstrated in previous publications [16, 217, the system-dependent
coefficient g in the relationship between g and r is proportional to the
inverse of the Ginzburg number Gi.

The phenomenological crossover model, as defined by Eqgs. (37)-(39),
differs from the crossover model previously employed by Kiselev et al.
[21, 227 in the following aspects. First, we have added the terms /=2 and
3 with critical exponents 4,=24, and 45, which were absent in the
previous formulation. Second, we have replaced the variable (T'— 7T.)/T, by
the modified variable 1= (T — 7,.)/T, as done in the work of Chen et al.
[15, 20]. Theoretical arguments that 1/7 is the more appropriate variable
have been presented in the literature [24, 30, 317]. As we shall see in the
next section the phenomenological crossover model with these modifica-
tions is capable of representing thermodynamic-property data of fluids in a
significantly larger range of temperatures and densities around the critical
point than any crossover model proposed previously.

Our phenomenological crossover model is specified by Eqgs. (37)-(39),
summarized explicitly in Appendix I, together with Egs. (4) and (5). It
contains the following universal constants: the critical exponents, the
linear-model parameter 5% as given by Eq. (13), and the crossover constant
qo=0.3. For the critical exponents «, f, and 4, we adopt the values given
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Table IV. Universal Critical-Region Constants

«=011, p=0325 4,=051, As=1.19
0o=03, Ay=-1 Ay=24y, Ay=d,=y+f~1
y=2—a—28 6=Q—a~p)/B

b2 =(y—28)/y(1—-28) e=2y+3f—1
e;={(5—2e)(e—B)3—2e)/3(58 —e) ey =(5—2e)(e—3B)/3(5 —e)
e;=2—a+4; €5 =(5—2e;3)(e;—38)/3(58 —e3)

by Eq. (9). The value of the critical exponent 4, is not well-known [ 18, 24,
32, 33]; we have adopted the value 1.19 recommended by Zhang [34]. The
values of all universal constants for the phenomenological crossover model
are listed in Table IV.

It is of interest to compare this phenomenological crossover model
with the theoretical crossover model discussed in Section 3, which is based
on a renormalized Landau expansion. For this purpose it is illustrative to
introduce a function ¥(q) defined by

¥(g)=[4g/R(¢)]" (40)

As shown in Appendix II, the parametric expression (39) for 44 can then
be transformed into

AT = (1/2) 4,y TM°T D + (1/41) oy M*DU + (1/51) dos M°D*>V U
+(1/31) a3 tM> T D3 + (1)2) dyy O MT 2D 29
—(12) dgrH — (1/2) Go 72 (41)

with coefficients 4, and 4, also specified in Appendix II. The interesting
point is that the functions 7, 9, %, ¥, and A4 arc identical to the
rescaling functions of Chen et al. [15] as given by Eq. (24), with the cross-
over function Y replaced Y. In addition, one new rescaling function, ¥7,
appears, which is defined by

¥, = peas—a (42)

On comparing Egs. (23) and (41) we see a similar structure, but there are
some differences. The first difference is that, unlike the coefficients a; in the
expansion given by Eq. (23), the coefficients 4, in Eq. (41) also depend on
the crossover function Y. This is related to the fact that we have imposed
the condition that Eq. (41) should reduce to the lincar-model expression,
Eq. (13), while the theoretical crossover model given by Eq. (23) does not
precisely recover the linear model as mentioned in Section 3. We also do
not have terms proportional to tM*, 12M? and M°. The second difference
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is that Eq. (41) contains asymmetric terms proportional to tM?> and t*M
that are absent in the Landau expansion given by Eq. (21) and, hence, in
Eq. (23). The reason is that in the crossover theory of Chen et al. [15, 20]
these asymmetry effects are handled by the mixing transformation given by
Eqgs. (26) and (27), while in the phenomenological crossover model these
asymmetry terms are entered directly. The third difference is the
appearance of a term proportional to t%, which modifies the analytic back-
ground 4,(T) given by Eq. (5). Apart from the way in which the mixing of
the scaling fields is treated, the two expansions, Egs. (23) and (41), are
rather similar. In fact it turns out that the effectiveness of either crossover
model is determined largely by the choice of the crossover function ¥ or Y.
New results obtained by Jin et al. [35] for the theoretical crossover model
confirm this conclusion.

5. COMPARISON WITH EXPERIMENTAL DATA

For a comparison of our extended phenomenological crossover model
with experimental data, we consider here the thermodynamic properties of
ethane and methane earlier analyzed by Luettmer-Strathmann [17] and
co-workers and by Jin et al. [36] in terms of the renormalized Landau
expansion discussed in Section 3. As in these previous papers, all tem-
peratures refer to the new international temperature scale of 1990 (ITS-90)
[37].

The phenomenological crossover model, defined by Eqgs. (35)-(39)
together with Egs. (4) and (5), contains the following system-dependent
constants: the critical parameters 7., p., and P_, the rescaled asymptotic
critical amplitude k of the coexistence curve, the linear-diameter amplitude
d, of the coexistence curve, the amplitude a of the asymptotic and
amplitudes ¢; (i=2-5) of the nonasymptotic terms in the parametric
representation, the inverse rescaled Ginzburg number g, and also the
coefficients A, in the background contribution to the pressure and the
coefficients u, in the background contribution to the caloric properties.
The values of these system-dependent constants for ethane and methane
are presented in Table V.

For ethane we adopt the values of the critical parameters reported by
Douslin and Harrison [38], with 7, changed to ITS-90,

T.=305322K, P,=48718MPa, p,=206.581kg-m~3 (43)

as adopted earlier also by Luettmer-Strathmann et al. [17]. For methane
we adopt the same critical parameters as used by Jin et al. [36]:

T.=190.564K, P,=45992MPa, p.,=162380kg-m > (44)
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Table V. System-Dependent Constants in the Crossover Model for
Ethane and Methane

Ethane Methane
Critical parameters
T, (K) 305322 190.564
P.(MPa) 48718 4.5992
pe(kg-m~3) 206.581 162.380
Critical coefficients
k 1.1276 1.0498
d, —0.6046 —0.4889
a 18.525 16426
c —8.9866 —11.066
[ 13.311 19998
e —5.6546 —3.7608
A 59308 3.6660
Cs -0.7666 —0.5386
Inverse Ginzburg number
g 1.1599 2.0066
Background coefficients
A, —5.4681 —49847
Ay 15.606 13.171
As —0.4667 0.1925
Ay 1.6179 0.2692
s —13212 —8.1067
s —3.2387 —4.6087
e —26.795 32184
is — 14837

These values of T, and P, for methane are identical to the values obtained by
Kleinrahm and Wagner [39], but the critical density p, =162.380 kg -m —*
is slightly lower than the value p,=162.660 kg-m~® reported by
Kleinrahm and Wagner. This small difference is related to the presence of
an asymptotic singular behavior of the coexistence curve predicted by the
scaling laws [24].

Except for the caloric background coefficients u;, all other system-
dependent constants have been determined from a fit of the crossover
model to the experimental P—p—T data obtained by Douslin and Harrison
[387] for cthane and to the experimental P-p—T data obtained by Wagner
and co-workers [40, 41] and by Trappeniers et al. [42] for methane. With
estimated errors in pressure, temperature, and density as small as
op=0.00005 MPa, ¢, =0.001 K, and o,=0.15 kg -m % [17,36], we find
that the equation represents the experimental pressure data with a reduced
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chi-square of 3.7 for ethane and of 3.6 for methane in a range of tem-
peratures and densities bounded by

t+124p2<05 and T>T, (45)

where T, =284 K for ethane and T, =178 K for methane. This range is
shown in Fig. 1 for ethane and in Fig. 2 for methane. Percentage deviations
of the experimental pressures from the calculated pressures are shown in
Fig. 3 for ethane and in Fig. 4 for methane. These percentage deviations are
less then 0.15% inside the region specified by Eq. (45) and increase up to
0.25-0.35% at the boundary. These pressure deviations are not as small as
those found by Luettmer-Strathmann et al. [17] for ethane and by Jin et
al. [367] for methane, but the present crossover model covers a significantly
larger temperature range, as shown in Figs. 1 and 2. The pressure
deviations are also not as small as those corresponding to the empirical
multiparameter analytic global equation developed by Setzmann and
Wagner [43] for methane, but the crossover model yields a significantly
better representation of the caloric properties near the critical point as
shown below.

The coefficients u, and g; in Eq. (5) determine the zero points of
entropy and internal energy and are not considered here. The coefficients
u; for i>2 determine the backround contributions to the isochoric specific
heat and can be determined from a fit to specific-hear or sound-velocity

300 T T T T

250 |

-3

200 |

150 +

100 |

Density, kg-m

50 - O critical pointH

0 1 1 i 1
150 200 250 300 350 400

Temperature, K

Fig. 2. Range of improved crossover model for
methane corresponds to area inside solid curve. Range
of crossover model as previously implemented by Jin et
al. [36 ] corresponds to area inside dashed curve.
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data. For ethane we determined the coefficients u, and p, from the ¢, data
obtained by Shmakov [44] close to the critical point and the coefficient y4
from sound-velocity data obtained by Terres et al. [45] and by Tsumura
and Straty [46] far away from the critical point. A comparison between
the experimental ¢, data of Shmakov and the values calculated from the
revised crossover model is shown in Fig. 5. The critical temperature implied
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Fig. 4. Percentage deviations of ~the experimental
pressures obtained by Wagner and co-workers [40,41]
and by Trappeniers and co-workers [42] for methane from
the values calculated with the crossover model.
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by the ¢, data of Shmakov appears to be 0.033 K higher than the value
reported by Douslin and Harrison for T,. When a correction is made for
this temperature difference, the ¢, data of Shmakov are reproduced with an
average deviation of 1.8 %, which is within the experimental accuracy. A
comparison with experimental sound-velocity data for ethane is shown in
Figs. 6 and 7. The crossover model represents the sound-velocity date
obtained by Tsumura and Straty [46] with a standard deviation of 1.6 %
including the near-critical region, where the classical global equation
developed by Friend et al. [47] cannot be used. The average deviation of
the sound-velocity data obtained by Terres et al. is about 2 %. Terras et al.
themselves claim an accuracy of only 0.3 %, but the deviations found in our
analysis are of the same order as those from the equation of Friend et al.
[47]. As shown in Fig 7, there are also some systematic deviations
between the sound-velocity data of Terres et al. [45] and those of Tsumura
and Straty [46]. A comparison with experimental ¢, data of Bier et al.
[487 and of Miyazaki et al. [49] is shown in Figs. 8 and 9. At a pressure
of 4473 MPa a small systematic deviation from the experimental data of
Miyazaki et al, connected with a difference of the actual locations of the
experimental and calculated ¢, maxima, is observed.

For methane the coefficients y, and u, were determined from a fit to
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C,Hy T=323.13 K
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® Tsumura and Straty

z 400 | O Terres et al. 4
=
-
b
]

$ 300} ]
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d
3
Q
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4 8 8 10 12

Pressure, MPa

Fig. 7. The sound velocity of ethane as a function of
pressure at T'=323.13 K. The filled symbols indicate
experimental data obtained by Tsumura and Straty
[46], the open symbols correspond to experimental
data obtained by Terres et al. [45], and the curve
represents values calculated with the crossover model.



Thermodynamic Properties of Fluids in the Critical Region

80 T L 1 ¥ T
CH,
® P=5.0000 MPa
| O P=5.5158 MPa
. 8o v P=6.8948 MPa |
i
T
ap
A
=
-
a

[s3

1 i i e

180 200 210 220 230 240

Temperature, K

Fig. 8. The isobaric specific heat ¢, of ethane at
various pressures as a function of temperature. The
symbols indicate experimental data obtained by
Miyazaki et al. [49] (filled symbols) and by Bier et al.
[487 (open symbols) and the curves represent values
calculated with the crossover model.

12 T T T
C,H O T=323 K
6 v T=348 K
10 | o T=373 K .
- A T=398 K
b
T
-
4
I
~d
-ﬂ‘

(]

Pressure, MPa

Fig. 9. The isobaric specific heat c, of ethane at
various temperatures as a function of pressure. The
symbols indicate the experimental data of Bier et al.
[48] and the curves represent the values calculated
with the crossover model.

19



20 . Kiselev and Sengers

T T T A4 T T
v v -3
2r 0 ° o 10 128 kg-m
% OD 8 v 163 kg-m_g
v ° o] fo) O 189 kg-m _g
I LY § oV A 1980 kg-m_
Lotr 9 0gp°¥ e * 10 211 kg-m g
& v % eN v ® 218 kg-m_g
o, v v 230 kg-m_
2 ot 8 o v ¥ | = 257 kg-m_g
a 1 vy g - A 258 kg-m_,
g By ¥y | & 288 kg-m
K B, ove
[ ) M v
3 "&g .
| ]
2| § e
1 1 1 1 1 1

180 195 210 2256 240 255 270
Temperature, K

Fig. 10. Percentage deviations of the experimental ¢, data
[50-52] for methane from the values calculated with the
crossover model.

experimental ¢, data of Younglove [50], as corrected by Roder [51], and
to experimental ¢, data obtained by Anisimov et al. [52]. The coefficients
uy and us were determined from a fit to experimental sound-velocity data
[53-557]. The critical temperature implied by the ¢, data of Anisimov et al.,
T.=190.678 K, appears to be 0.114 K higher than the value of T, obtained
by Kleinrahm and Wagner [397] and adopted by us; we shifted the tem-
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sound velocity w for methane [53-55] from the values calculated
with the crossover model.
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perature associated with the ¢, data of Anisimov et al. by this amount.
Deviations of the experimental ¢, values from those calculated with the
crossover model are shown in Fig. 10. Deviations of the experimental
sound-velocity data obtained by Gammon and Douslin [53], Straty [54],
and Trusler and Zarari [55] for methane are shown in Fig. 11. The
crossover model represents the specific-heat data and the sound-velocity
data with a standard deviation of 1.8 %, which is within the experimental
accuracy. The actual sound-velocity values for methane at various
temperatures are plotted as a function of density in Fig. 12. That a good
agreement is obtained even at a temperature as high as 373.15K and at
densities that are actually outside the range indicated in Fig. 2.

A comprehensive global analytic equation of state for methane has
recently been developed by Setzmann and Wagner [43]. This analytic
equation of state yields a very good representation for the thermodynamic
properties of methane, but it fails to account for the divergent behavior of
the isochoric specific heat at the critical point, which in turn causes the
sound velocity to vanish at the critical point. The sound velocity of
methane at the near-critical temperature 7'=190.572 K is shown in Fig. 13.
The behavior of our crossover model near the critical point is identical to
that of Jin et al. [36], while the analytic equation of Setzmann and Wagner
[43] fails to follow the rapid decrease in the sound velocity in the near-
vicinity of the critical point. This phenomenon is illustrated even more
dramatically in Fig. 14, where a comparison is made with new experimental
¢, data obtained by Anisimov et al. [52].

Bo T ] T T Ll T T T T T T
CH L CH ]
4 ® P=5.0000 MPa to 4 O P= 8.2737 MPa
O P=5.5158 MPa A P=10.3421 MPa
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Fig. 15. The isobaric specific heat ¢, of methane at various pressures as a function of
temperature. The filled symbols indicate experimental data obtained by Kasteren and
Zeldenrust [57], the open symbols experimental data obtained by Jones et al. [56], and the
curves represent values calculated with the crossover model.
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A comparison with experimental data for the isobaric specific heat of
methane is shown in Fig. 15. Good agreement between calculated values
and experimental data of Jones et al. [56] and experimental data of
Kasteren and Zeldenrust [57] for the isobaric specific heat is observed.

Up to this point we have restricted the analysis of our crossover model
to the one-phase region. However, it can also be extrapolated to represent
the thermodynamic surface in the two-phase region down to temperatures
about 15-20% below the critical temperature. A comparison of our cross-
over model with experimental vapor and liquid density data is shown in
Figs. 16 and 17, and a comparison with vapor-pressure data is shown in
Figs. 18 and 19. One problem with scaled equations of state used in the
past is that the agreement between experimental and calculated values
deteriorated very rapidly as soon as the equations were extrapolated
outside their near-critical range of validity. From Figs. 16-19 we see that
with a crossover equation of state, the difference between experimental
and calculated values increase only gradually upon extrapolation.

6. DISCUSSION

The critical point is a point of marginal thermodynamic stability and
the thermodynamic surface of fluids has a singularity at the critical point.
This singularity can be characterized by scaling laws with universal
exponents and universal scaling functions in the immediate vicinity of the
critical point. However, the effects of long-range fluctuations, associated
with enhanced values of the compressibility, are not restricted to the
immediate vicinity of the critical point but extend over a large range of
temperatures and densities around the critical point [16]. To deal with the
thermodynamic behavior of fluids in the extended critical region, we have
developed an equation of state that includes the crossover from singular
behavior near the critical point to regular behavior far away from the
critical point. This goal has been accomplished by considering an expan-
sion around the critical point, retaining a finite number of terms and
demanding that each term becomes an analytic function for large values of
a parametric variable that yields a measure of the distance from the critical
point. By comparing this parametric model with experimental ther-
modynamic-property data, we have demonstrated that such a crossover
model can indeed account for the behavior of thermodynamic properties of
fluids in a large range of temperatures and densities around the critical
point.
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APPENDIX I. THE HELMHOLTZ FREE-ENERGY DENSITY IN

THE PARAMETRIC FORM

AA(r, $)=kr’* " *R*(q) ]:a?’o(ﬂ) + 25: c;r"R~%(q) 5”,—(9):]

T=r(1-529%)
m=Adp—d,t=kR #*?(q) r*3
The functions ¥,(3) and ¥,(9) are
Yo(9) = (1/26))[28(b* — 1)/(2~ a) + 2p(2y — 1)(1 = b*9*)/y(1 — )
+(2p = 1)(1 = b*9%)*/a]

P () =[1/262(1—a+4)J[(r+4)/2—a+4,)—(1-28)b*3]
Po(9)=[1/2b* (1 —a+ 4,)1[(y + 4,)/(2 — o+ 4,) — (1 = 2$)5*3]
V()= 39— (2/3)(e — B)b*3* + (1 —2B) e, b*F°/(5 — 2¢)
,(3) = (1/3)6*3* + (1 —2B)e,b*9°/(5 — 2¢)
P(3)=(1/3)p*3* + (1 —2B)e,b*3°/(5 — 2e,)
where

4, =vw

4,=24,

Ay=A4=y+pf—1

Ads=vws

b?=(y—2B)/y(1 —28)

e=2y+3p—1

e;=(5-2e)(e—P)3—2e)/3(56—e)

e,=(5—2e)(e—3p)/3(56—¢)

e3=2—a+4;

e3=1(5—2es)(es—3P)/3(5 —e3)
The crossover function R(q) is

R(g)=1+4"/(q0+q)

with g =rg.

(A1)

(A2)
(A3)
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APPENDIX II. THE HELMHOLTZ FREE-ENERGY DENSITY
IN THE RENORMALIZED FORM

We introduce a new function,

Y(g)=[a/R(¢)]*" (A2}
and replace the function R(g) in Egs. (A2) and (A3) by ¥(g), so that
92 = (m?/ri?g" ) YU — 2P (A22)
and
r=1t+ (b*m*k*g' —2#) YU 24 (A23)

If we then substitute Eqs. (A22) and (A23) into Eq.(Al) and use the
expressions (A4)-(A9) for ¥,(3), we obtain

A4 = (1/2) G tm? O =204 (1/41) Gogm* T 2o~ 4
+ (1/5!) dgsm> T2 == 5B+ 4941 L (1/31) @,y om? TR = =38+ 4541

+(1/2) @yy Tm Y22 (172) Gy Y (A24)

where the coefficients &, are given by
o= (2aB/kb’g' = =) {2(0* ~ 1)/2 — &) + (27 — 1)/y(1 —a)
+[eib?2ag (1 —a+ 4)1[2(y + 4,)/(2— o+ 4) + (1 = 28)1 ¥
+ [e;0°/2ag*(1 — o+ d,) 1[2(y + 45)/(2 — o+ 4,) + (1 - 28)1 77}

(A25)
Gog = [MaP(b? — 1)k~ ¥=*2 — )]
X {14 [c,p*(2—a)2ag™(1 —a+4,)(b>—1)]
<[ +d4)/C—a+d)+(1—28)]F
+ [eyb2(2—a )2ag* (1 — o+ A) (b2 —1)]
< [(p+45)/2 —a+4y)+(1—28)]72) (A26)

Gos = (SIBYk*g™ =+ ) es[1/3 + (1 = 2B)es/(5 — 264))
+ (e /g )1 = 2e—B)f3 + (1 —2B)es/(5 — 2e)] T2

+(e5/g® )L = 2e— B3 + (1= 2B)e /(5 —2e)] T 10 49041
(A27)
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&13 — (2b2/k2g2—3ﬁ7a+415)[cj 4 (C4/gA4—A5) ?(44—45)/411
+{c3 /g W6+ 28 — 2e) YU} (A28)
Gy =2, g2+t (A29)
do = (akg®/b*){y(y — 1)/a(l —2)(2 — @)
— (¢ fag™) [y +4)/(1 —a+4)2—a+4)17
+ (e, /ag)(y+ 4,)/(1 —a+ 4,)2 —a+4,)] 72} (A30)

Introducing rescaling functions in analogy to rescaling functions previously
introduced by Chen et al. [15],

T = §2-2)a _ §2—ivye (A31)

= Pe-e-6pya . Fnie (A32)
Y = PB4 Pl (A33)
= =241 _ §los—12)w (A34)
¥, = Y- o Fé—Sa—6pyer (A395)
H=F =71 (A36)

and defining a rescaled order parameter, M =c,m, we obtain from
Eq. (A24)

A4 =(1/2)6,,TM*T D + (1/41) dos M*D*U + (1/5)) dgs M3 D29 U
+(1/3Y) Gt M3 T DYV + (1)2) oy 1> MT 29249

—(1/2) oA — (1/2) G,7° (A37)
with
?12:?12/05,» ?04=Cf04/€,2,, iioszfjos/ci (A38)
dyz=dg/c,, Ay =dy/c,, ap =4y

In the limit ¢> 1 (Y=1), Eq. (A37) takes the form
AA=(1)2) a,tM? + (1/A) aga M* + (1/51) ags M
+(1/3) a3 tM> + (1)2) ay T°M — (1/2) ayt? (A39)

where the coefficients a,,, ao4, dos, @13, 43;, and g, are determined by Egs.
(A25)-(A30) and (A38) with ¥=1. The classical theory will be valid as
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long as the singular specific heat 4"t~ * is much smaller than the classical
jump 3a?2,/ay,. This condition yields

> Gi (A40)

where the Ginzburg parameter, associated with the specific-heat singularity -
[16], is

Gizg '[y(y—1) b*(b*— 1)/ —a) ud3] "™ (A41)
with
Oo=2(0>—1)/2—a)+ (2y — L)/3(y — 1) (A42)
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